
USP Independent Study Module (ST)

Group Report

Mastering the game of Onitama with Reinforcement Learning

Student Names, Module Code:

Arijit Dasgupta, UIS3901S

Chong Yu Quan, UIS3901S

Student Number:

A0182766R

A0136286Y

Student Emails:

arijit.dasgupta@u.nus.edu

chong.yuquan@u.nus.edu

April 16, 2021

i

Contents

List of Figures iii

1 Introduction 1

2 Onitama Environment 2

2.1 Rules . 2

2.2 Code representation . 3

3 Algorithm 6

3.1 Policy Based Reinforcement Learning . 6

3.2 Deep Deterministic Policy Gradients (DDPG) . 7

4 Reinforcement Learning Cast 9

4.1 State . 9

4.2 Action . 10

4.3 Reward & de�ning the environment rollout . 12

5 Methodology 13

5.1 The issue of validity . 13

5.2 First segment of the neural network . 14

5.3 Branched vs Linear Networks Architectures . 16

5.4 Combining Validity & Action branches . 17

5.5 Dual networks for Validity & Actions . 18

5.6 Training Process . 20

6 Results 21

6.1 Preliminary Model Selection . 21

6.2 Extended training . 24

6.3 ELO Round Robin Tournament . 24

7 Conclusion 30

7.1 Summary . 30

7.2 Limitations . 30

7.3 Possible Improvements . 31

8 Appendix 32

Contents ii

8.1 Rules of Onitama . 32

8.1.1 Setting up . 32

8.1.2 Movement . 33

Pieces movement phase . 34

Cards movement phase . 34

8.1.3 Winning . 34

iii

List of Figures

2.1 An example of 'Destroy'; Blue pawn capturing Red master 2

2.2 An example of 'Conquer'; Red master moving into Blue temple 3

2.3 'Conquer' and 'Destroy' achieved simultaneously; Blue master capturing Red master,

while moving into Red temple . 3

2.4 Coordinate convention for the board and naming convention for the pieces 4

3.1 Pseudocode for DDPG . 7

4.1 State representation of the board . 9

4.2 State representation of the cards . 10

4.3 Representation of the action space of the agent . 11

4.4 Alternative board state representation (not used) . 12

5.1 Distribution of valid moves per turn from a dataset of 71789 turns 13

5.2 The 'Actor Preprocess' Block . 15

5.3 The 'Critic Preprocess' Block . 15

5.4 The DDPG Critic Network . 16

5.5 Linear Networks . 16

5.6 The 'val branch actions' Network . 17

5.7 The 'val after actions multiply' Network . 17

5.8 The 'actions after val multiply' Network . 18

5.9 The 'val branch actions multiply' Network . 18

5.10 The 'dual' Network . 19

5.11 The 'actions only' Network . 19

6.1 Metrics for "actions after val" . 21

6.2 Metrics for "actions after val multiply" . 21

6.3 Metrics for "val after actions" . 21

6.4 Metrics for "val after actions multiply" . 22

6.5 Metrics for "val branch actions" . 22

6.6 Metrics for "val branch actions multiply" . 22

6.7 Metrics for "actions only" . 22

6.8 Metrics for "dual" . 23

6.9 Metrics for "val branch actions" for extended training 24

6.10 ELO scores during 2500 round robins of all 9 models 25

6.11 Final ELO scores of all 9 models at the end of 2500 round robins 26

List of Figures iv

6.12 Final win rates of all 9 models . 27

6.13 Pairwise net win matrix of all 9 models . 28

6.14 Pairwise average number of turns for all 9 models . 29

8.1 The starting board of Onitama . 32

8.2 The colour of the card (circled). Note that the colour of the moveset itself may not be

the colour of the card. 33

8.3 An example of the Onitama board at the end of the setup, ready to begin a game . . 33

1

1 Introduction

Arti�cial intelligence (AI) is one of the most interesting and fastest developing �elds in the world of

science today. AI goes by many de�nitions, one of the most general one being intelligence shown by

a machine (such as a computer), as opposed to a living being (such as a human or animal). In the

recent years, developments in AI technology have allowed many new applications for AI, such as facial

recognition and self-driving cars. While the achievements of AI are magni�cent to behold, it is also

important to further classify these AIs in order to properly study them. One way to classify AI is to

study how their algorithm works. While there are many ways that an algorithm can be implemented,

generally a proven algorithm(s) will be implemented and minor tweaks are made as needed to better

suit the task at hand. For this project in particular, we will attempt to create an AI that can play

the board game Onitama using deep reinforcement learning.

There have been many attempts to create AIs to play board games before. Board games are normally

chosen for their well-de�ned environment which eases the representation of game states, signi�cantly

simplifying the code. Two of the earlier algorithms that are commonly used to play board games are

the Minimax and Monte-Carlo Tree Search algorithms, which do their task by mapping out possible

moves and choosing the best out of those moves. However, the method that this project will be

attempting, reinforcement learning, relies more on \training"; the AI will be fed data beforehand, and

it will process the data in order to help it play the game in the future. This method has been used to

create AIs that surpass human abilities in many games, perhaps most famously AlphaGo defeated Lee

Sedol, considered to be the best Go player of all time, in 2016. Perhaps equally important is the rise of

new chess engines that rely on reinforcement learning, such as Leela Chess Zero and AlphaZero, which

are capable of defeating Stock�sh, which for many years reigned unchallenged as the world's most

powerful chess engine with its advanced Minimax and pruning algorithms. This showed the potential

of reinforcement learning to match and even outperform humans and older algorithms, sparking much

interest in the �eld.

2

2 Onitama Environment

2.1 Rules

A summary of the rules for Onitama is available in the appendix. The most important aspect to note

are the two win conditions for Onitama, as these de�ne the tasks that our AI will aim to accomplish.

We refer to the �rst win condition as `destroy'; done through capturing the opponent's master (a

pawn and the master can both capture the opponent's master), Figure 2.1. The second win condition,

`conquer' is achieved by moving our master to the opponent's temple (the square where the opponent's

master starts the game on), Figure 2.2. An implication of these de�nitions in the code is that if a

victory by destroy and conquer is achieved simultaneously (Figure 2.3), it will be treated as victory

by destroy, as far as the statistics is concerned (for Chapter 4).

Figure 2.1: An example of 'Destroy'; Blue pawn capturing Red master

Chapter 2. Onitama Environment 3

Figure 2.2: An example of 'Conquer'; Red master moving into Blue temple

Figure 2.3: 'Conquer' and 'Destroy' achieved simultaneously; Blue master capturing
Red master, while moving into Red temple

2.2 Code representation

There are two parts of the code that needs to be de�ned: the game itself and the AI that will be

implemented to play the game. Both aspects will be coded using Python. The game will be represented

as a class encompassing all the gameplay features (moving, capturing, card distributions, etc.). The

board itself is represented using a 2D, 5-by-5 array, each square being represented as a tuple in the

form of (i, j) following the Cartesian Coordinates with the origin (0, 0) located on the top-left (blue's

side) of the board, as seen in Figure 2.4 below.

Chapter 2. Onitama Environment 4

Figure 2.4: Coordinate convention for the board and naming convention for the pieces

To select and move the pieces itself, we have named each of the pieces separately, rX and bX repre-

senting the 4 pawns on each side while R and B represent the respective colour's master, also displayed

in Figure 2.1. Each piece will be stored in the `piecestate' dictionary with the name of the piece as a

key which corresponds to the coordinates of that piece (if it is still alive) or `-1' if it is dead. While it

is also possible to not number the pawns, as the pawns are equivalent to each other (e.g. r1 on (1, 1)

and r2 on (2, 2) is technically equivalent to r3 on (2, 2) and r4 on (1, 1)), this numbering convention

was adopted to make coding the game simpler. This comes at the cost of the e�ciency of the AI, as it

will evaluate di�erent pawns as distinct entities, instead of copies of a single entity, which dramatically

increases the number of positions that will be evaluated when training and making a decision.

Similar to the pieces, all 16 cards will also be saved in a dictionary, with the name of the card as the

key that corresponds to the moveset of the card (A, B, C, D), each of which is represented as a change

in coordinates. There is a single card with 2 moves (tiger), 10 cards with 3 moves, and 5 cards with 4

moves. Each of the cards also have a colour (red or blue) assigned to them, stored in a third, similar

dictionary.

To perform a move, the code requires 3 inputs: the name of a piece, the name of a card, and a letter

corresponding to a move. Any invalid input (e.g. dead piece, invalid moves, cards that are not in

hand) will be rejected and the user will be prompted to enter another input. Assuming all 3 inputs

are valid (e.g. R Tiger A), the move will be executed (in this case, the red master will move 2 steps

in the negative i-direction).

Chapter 2. Onitama Environment 5

The two win conditions (explained earlier) corresponds to their own code representations. `Conquer'

is achieved when the red master (R) is represented by `-1' (dead) in the `piecestate' dictionary which

means that the blue player won. `Destroy' is achieved when the blue master (B) is represented by (4,

2) (the red temple) in the same dictionary, causing a blue victory. The opposite applies for the red

player's victory conditions.

6

3 Algorithm

3.1 Policy Based Reinforcement Learning

For this project, the team focuses on policy-based learning algorithms, from which most state-of-the-art

algorithms are based on. Unlike value-based learning that generates a policy from the approximated

value function, policy-based learning directly parametrises the policy. The advantages of policy-

based learning over value-based reinforcement learning are that it has better theoretical and empirical

convergence properties and the fact that it can handle high dimensional and even continuous action

spaces. Besides, it can learn stochastic policies, which is the generalisation of deterministic policies.

This is quite a crucial advantage as deterministic policies cannot solve some problems. However, the

drawbacks of policy-based methods are that they often converge to a local optimum instead of a global

one. Furthermore, evaluating a policy can be very ine�cient and high variance. Policy-based methods

can be seen as an optimisation problem to �nd the parameter� that minimises the cost function

J (�). Although there are methods that do not use gradients (e.g. hill-climbing, simplex, genetic

algorithms), greater e�ciency is often possible with gradient-based methods. As a result, the project

focuses on policy gradient reinforcement learning methods in particular. Policy gradients algorithms

iteratively search for a local minimum by descending the local gradient of policy concerning� as shown

in equation 3.1, wherer � J (�) is the policy gradient, and � is learning rate.

� � = � � r � J (�)

� � � + � �
(3.1)

By assuming that the policy, � � (S; A) is di�erentiable when � � (S; A) > 0 and gradient r � � � (S; A)

is known, the policy gradient can be computed analytically by using the following identity shown in

equation 3.2. wherer � log� � (S; A) is the score function.

r � � � (S; A) = � � (S; A)
r � � � (S; A)

� � (S; A)
= � � (S; A)r � log� � (S; A) (3.2)

The policy gradient theorem generalises to all MDPs, stating that for any di�erential policy � � (S; A)

and cost function J (�), the policy gradient is as shown in equation 3.3.

� r � J (�) = E� � [r � log� � (s; a) � Q� � (s; a)] (3.3)

Chapter 3. Algorithm 7

In the REINFORCE algorithm that uses Monte Carlo gradient descent, the return V� (S) from a

terminated episode is used as the unbiased sample ofQ� � (s; a). However, it was discovered that despite

using an unbiased value estimate, high variance is still observed in the policy gradient, which slows

down learning. Also, the learning process is extremely computationally expensive, requiring millions

of episodes for convergence for simple tasks. Given the problems of the Monte Carlo gradient descent,

the Actor-Critic policy gradient algorithms are introduced. Actor-Critic policy gradient algorithms

maintains two sets of learned parameters as follows: 1) Critic: Updates! parameters to estimate a

value function (e.g. Q� � (s; a) � Q! (s; a)), 2) Actor: Updates � parameters to estimate policy� � (s; a).

Actor-Critic policy gradient approaches follow an approximate policy gradient as shown in equation 3.4

below.

�r � J (�) � E� � [r � log� � (s; a)Q! (s; a)]

� � = � � r � log� � (s; a)Q! (s; a))
(3.4)

3.2 Deep Deterministic Policy Gradients (DDPG)

Figure 3.1: Pseudocode for DDPG

After the introduction of Actor-Critic policy gradient algorithms in the previous section, the DDPG

algorithm can now be elaborated with its pseudocode shown in Figure 3.1. DDPG is an actor-critic,

Chapter 3. Algorithm 8

model-free algorithm based on the deterministic policy gradient that can operate over continuous

action spaces developed by Lillicrap et al. [1]. It consists of four fully connected deep neural networks

(FCDNN), namely the actor FCDNN, critic FCDNN, target actor FCDNN and the target critic

FCDNN, and a replay bu�er. The replay bu�er takes inspiration from Deep Q-Learning (DQN) from

the work of Mnih et al. [2], where the agent's experiences at each time-step,E t = (St ; A t ; Rt ; St+1),

are stored in a replay bu�er, D = E1; E2 : : : EN . The replay bu�er has a �nite space (e.g. 1000000

episodes) and is based on a �rst in �rst out principle in replacing experiences stored in the replay

bu�er. During the training process of the FCDNNs, a speci�ed batch (e.g. 512 episodes) of the

experiences stored in the replay bu�er will be randomly sampled for learning. The actor FCDNN

takes in state observations and generates softmax outputs with the dimensions of the action space.

On the other hand, the critic FCDNN takes in state observations concatenated with the corresponding

actions taken by the agent sampled from the replay bu�er to give a single output of the state-action

value, Q! (s; a). The target actor FCDNN and target critic FCDNN follows an identical architecture

with the actor FCDNN and critic FCDNN, respectively. However, the two target FCDNNs are not

utilised during the experience gathering episodes but for the training of the actor and critic FCDNNs.

The weights of each hidden unit in the target FCDNNs are updated based on a parameter,� , for its

corresponding FCDNN counterpart as shown in equation 3.5 below.

� 0
target actor = � � actor + (1 � �)� target actor

! 0
target critic = � ! critic + (1 � �)! target critic

(3.5)

On initialising the FCDNNs, the target FCDNNs are a hardcopy of their original counterparts, i.e.

� = 1. After every subsequent training of the actor and critic FCDNNs, the target FCDNNs undergoes

a softcopy update (e.g. � = 0 :005). The training losses of the actor and critic FCDNNs are stated in

equation 3.6 below.

�r � J (�) �
1
N

X

i

r A Q! critic (S; Aactor)r ! actor � ! actor (S) (actor)

� ! critic = r +
Q ! target critic (S0; A0
target actor) � Q! critic (S; A) (critic)

(3.6)

For the critic losses with experiences from the replay bu�er, the action of the target actor FCDNN

from S0, A0
target actor , is �rst obtained. From S0 and A0

target actor , Q! target critic (S0; A0
target actor) can be

obtained from the target critic FCDNN, from which added to reward, r , gives the TD target. The

critic loss is hence the mean squared error,� 2
! , between the TD target and the state-action value,

Q! critic (S; A), from the critic FCDNN. For the actor losses, the action selected with an updated policy

from the actor FCDNN, Aactor , is obtained. The actor losses are then the gradient of the state-action

value, Q! critic (s; Aactor), with respect to Aactor using S and Aactor from the critic FCDNN multiplied

with the gradient of actor FCDNN's policy output given S input, � ! actor (S), with respect to the actor

FCDNN's parameters, ! actor .

9

4 Reinforcement Learning Cast

4.1 State

The reinforcement learning cast is a very crucial aspect that one must carefully de�ne. To de�ne the

state of the board game, we speci�cally look at the situation on the board and the cards present in

the game-play. To simplify the computational requirements of the training process, we decided to use

only 5 of the 16 cards available in Onitama. Each of these 5 cards have a total of 4 possible moves.

There are a total of
� 16

5

�
= 4368 ways of selecting 5 cards from 16 possible choices. These cards are

'dragon, 'elephant', 'goose', 'rooster' & 'monkey'. Note that the order of these 5 cards as mentioned

matter. This will make it signi�cantly easier for the agent to learn to play the game as it does not

need to learn which one of the 16 cards are at play. To represent the board state, we propose using

10 layers of a 5� 5 grid as show in Figure 4.1.

Figure 4.1: State representation of the board

The �rst four layers of the board state represent the current player's pawns (from pawns 1 to 4 in

order). The 5 � 5 grid represents the spatial location of the piece. All spatial locations in the 10

layers are taken from the perspective of the current player. A 1 indicates presence while 0 indicates

absence. The �fth layer represents the positions of the current player's master piece. The �nal �ve

layers follow the same pawns and master positions, but it is for the opponent player instead. This

10� 5� 5 representation of the board state can be taken in by a CNN. One may ask, as all four pawns

are identical pieces, swapping any two pawns should not change the board, so why split them apart?.

This is a valid question, and the reason will be explained in section 4.2. Representing the card state

Chapter 4. Reinforcement Learning Cast 10

is easier as it can be represented by a one-hot encoded vector of length 10. Figure 4.2 shows how the

card state is represented.

Figure 4.2: State representation of the cards

The �rst 5 inputs of the card state represent the presence of the current player's cards. As any player

has 2 cards at all times, two of the 5 inputs will be 1 while the rest are 0. The same rule applies for

the next 5 cards which represent the presence of the opponent's cards. As the side card must be the

card not represented in either half of the one-hot encoded vector, we consider the choice of the side

card implied by the one hot vector. In other words, the 10 inputs in the one-hot encoded vector is

su�cient to represent the card state of all 5 cards in the game. Note that the order of the cards in the

one-hot encoded vector is always 'dragon, 'elephant', 'goose', 'rooster' & 'monkey', and this order is

consistent throughout all training. For instance, this means that the agent is expected to learn that a

'1' in the second position always refer to the 'elephant' card. This card state can be used as an input

into a fully connected layer.

4.2 Action

When executing a turn in Onitama, the player can have a maximum of 5 pieces on the board, with

two cards and a maximum of 4 moves per card. Assuming that all pieces are able to make a valid

move with all 4 of the moves in both cards, we have a total of 5� 2� 4 = 40 maximum possible moves

in one turn. In most cases however, not all combinations of moves and pieces are always valid (moves

outside the board or on a piece from the same team), hence usually there are less than 40 possible

moves a piece can make in one turn. Nonetheless, the upper limit if this number is important as that

will represent the number of neurons in the output of our neural networks. Figure 4.3 illustrates our

proposed discrete action space for the agent.

Chapter 4. Reinforcement Learning Cast 11

Figure 4.3: Representation of the action space of the agent

As Figure 4.3 shows, the 40 actions are split into the 5 pieces and each one of them are split into

2 cards, which have their 4 moves in a consistent order. The order of the pieces are from pawns 1

to 4 and then the master piece. The card 1 and 2 ordering follow the same order as speci�ed in the

card state. So if the player has the 'rooster' and 'elephant' cards, card 1 will be 'elephant' and card

2 will be 'rooster'. This order is always consistent and maintain so that it matches the ordering in

the card state (Figure 4.2. In our proposed action space, we identify the pawns numbered 1 to 4. We

did this so that the agent would know exactly which pawn it should move inside the board and not

any random pawn. This is why we needed to separate the pawns in the board state (Figure 4.1) as

the agent should be able to tell apart which is pawn 1, or 2 etc. and take the actions speci�c to those

pawns. Imagine if we rede�ned the board state as shown in Figure 4.4 instead. All the pawns are

de�ned in one layer. Hence, if we swapped any two pawns, it would not change the second layer of the

board state. However, when it comes to choosing an action, the agent would not be able to tell which

pawn (1 to 4) it should move. The action space output will be di�erent if the two pawns were not

swapped for the same exact change on the board. Therefore we stick to the board state representation

in Figure 4.1 to go well with our action space for this project.

Chapter 4. Reinforcement Learning Cast 12

Figure 4.4: Alternative board state representation (not used)

4.3 Reward & de�ning the environment rollout

We used an extremely simple reward structure for this project. The reward is 1 if the agent wins after

making its move, -1 if it loses after making its move and 0 otherwise. The more interesting discussion

is the manner in which we de�ne a rollout of the environment. This is crucial as the points in which we

gather St and St+1 of the board and card state changes everything about what the agent is learning.

At the start of the project, we took St right before the agent makes its move andSt+1 immediately

after the agent makes its move. This seemed intuitive at �rst, after the agent makes its move, the

board and card states change and therefore one should record the change. When we implemented

this method, we found that it was impossible for the agent to learn to beat any AI it was training

against. We realised that the way we de�ned the rollout of the environment was completely wrong.

The rollout of the environment should not only include the change the agent makes on the board, but

the move made by the opponent AI as well. As far as the agent is concerned, the opponent AI is part

of the environment. What the agent was learning was not beating the opponent, but the change it

had on the board. ThereforeSt should be recorded before the agent makes the move andSt+1 should

be taken before the agent makes a move in thenext turn. We found a big di�erence in how the agent

was performing after making this change

13

5 Methodology

5.1 The issue of validity

The �rst aspect one must tackle for the training process is how we manage invalid actions. As

mentioned in section 4.2, there may be a maximum of 40 possible moves but most of them may not be

valid. To illustrate this clearly, Figure 5.1 shows the distribution of the number of valid moves in each

turn, taken from a dataset of 71789 turns. The number of valid turns was measured in both agent's

and opponent's turns.

Figure 5.1: Distribution of valid moves per turn from a dataset of 71789 turns

It is clear that the board game hardly ever provides the ability for a player to have all 40 choices. In

fact the maximum number of valid moves recorded was 30. The average and median are 14.2496 and

Chapter 5. Methodology 14

14 respectively. The most common value recorded is 12. Note that this distribution was generated

when the untrained agent played against a Minimax AI of depth 1, hence di�erent strengths in players

may produce slight variations in the values.

The fact that only 14 of 40 output neurons link to valid moves mean that it is necessary for the agent

to learn to make valid moves. In the early stages of training however, it is possible for the agent

to output an invalid move as the most probably choice. In this case, we implement a 'hand of god'

intervention where we force the agent to make a valid move. For each turn, we �rst extract an array of

length 40 that indicates the validity of each move from the board game. A 1 indicates the move is valid

and 0 otherwise. We call this array the valid mask. Afterwards we do an element-wise multiplication

of the mask onto the action space output. Note that the action space output is a softmax layer, hence

all the values of the neurons add to 1. To preserve this property, we re-normalise the values so that the

sum of the neurons add up to one. With this, it becomes impossible for the agent to take an invalid

action. However, this is not satisfactory as we do not want the agent to rely on this valid mask. If the

agent was originally giving an invalid move high values before the valid mask, then the agent must

still learn that it made a bad choice.

With this added dimension of validity, the project has two aims. The �rst is to learn good moves to

beat the opponent and the second is to learn valid moves. The best case scenario is if the agent can

achieve both. We believe that learning valid moves will improve the �rst goal of learning better moves

as the action space will become constrained, allowing the agent to choose good moves with a higher

probability.

5.2 First segment of the neural network

To tackle the issue of validity, we have designed 8 di�erent neural network architectures for testing.

Note that only the actor and the target actor networks are varied, while the critic network remains the

same. Before delving into the networks to determine branches for validity and actions, we �rst de�ne

preprocess blocks that take in the board state & card state (and actions for critic) and processes them

into a 256 � 1 vector. Figure 5.2 illustrates the 'Actor Preprocess' block we designed. The board state

goes through two layers of convolution and max-pooling. During each convolution, padding is applied

to keep the shape, which them gets altered by max pooling. Each layer is also batch normalised. This

leads to the data having a shape of (128,1,1) which then gets
attened to a (128,1) vector. On the

other side, the card state goes through one fully connected layer to the same size of (10,1) before

concatenating with the (128,1) vector. This new vecotr of shape (138,1,1) then goes through two fully

connected layers until it has an ultimate shape of (256,1).

Chapter 5. Methodology 15

Figure 5.2: The 'Actor Preprocess' Block

The 'Critic Preprocess' block is almost identical to the 'Actor Preprocess' block with the only di�er-

ence being that the former also inputs the actions from the Actor. Note in Figure 5.3, that an extra

(4,1) vector of actions goes through one fully connected layer to the same shape before concatenating

with the other vectors to form a (178,1) vector.

Figure 5.3: The 'Critic Preprocess' Block

Chapter 5. Methodology 16

The remainder of the critic's network is relatively simple as shown in Figure 5.4. The output of the

'Critic Preprocess' block only goes to a layer with a single neuron. This neuron has a linear activation

function and is made to approximate the Q value.

Figure 5.4: The DDPG Critic Network

5.3 Branched vs Linear Networks Architectures

To accommodate validity and actions, we embrace two di�erent philosophies in our architectures. The

�rst philosophy is what we call "no multiply". The �rst method is the linear network approach which

attaches a layer next to the actions Softmax output layer to learn the valid mask. A mean squared

error loss is applied for any layer that tries to learn the valid mask in this project. We shall refer to

any layer that tries to approximate the valid mask as the validity layer. As the mask is a value that

is either 0 or 1, we felt that it was appropriate to use a sigmoid activation function. This method

may be considered a softer implementation as it does not directly force the actions layer to learn valid

actions. The hope is that, as there is a layer beside that is learning valid actions, the actions layer

will resemble the magnitudes set by the validity layer. This may not fully work as the layers are fully

connected, so there is no guarantee that the magnitude (high or low) of the �rst neuron of the actions

layer will follow that of the �rst neuron of the validity layer. Nonetheless, we think it is worth testing

this architecture.

(a) The 'val after actions' Network (b) The 'actions after val' Network

Figure 5.5: Linear Networks

There are two ways that we can put the validity layer beside the actions layer. Figure 5.5 shows

both approaches. In Figure 5.5a illustrates the 'valafter actions' network where the output from the

Chapter 5. Methodology 17

'Actor Preprocess' block goes into the actions layer and then into the validity layer. Figure 5.5b simply

shows the swap between both layers, and we call this the 'actionsafter val' network.

Figure 5.6: The 'val branch actions' Network

The other representation is to branch out each layer from the 'Actor Preprocess' block instead of

putting them beside each other, hence called the branched netork. Figure 5.6 illustrates this network.

We call this the 'val branch actions' network.

5.4 Combining Validity & Action branches

The second philosophy in handling validity and actions is what we call the "multiply" method. This

approach quite literally multiplies the actions and validity layers together in an element-wise fashion.

This is a much harder implementation that attempts to force the actions to be valid instead of

expecting it to learn passively. We can this of the agent creating its own knowledge of validity and

simply applying it to its predicted actions to only output the valid actions. Note that the output of

the multiplication is re-normalised as the actions output is to be a probability distribution.

Figure 5.7: The 'val after actions multiply' Network

Chapter 5. Methodology 18

Figure 5.8: The 'actions after val multiply' Network

We can apply this multiply method to each of the three architectures described in the previous section.

Figures 5.7 and 5.8 illustrate this multiplication and we refer to them as the 'val after actions multiply'

& 'actions after val multiply' networks.

Figure 5.9: The 'val branch actions multiply' Network

Finally, we do the same with the 'val branch actions' network and multiply the two layers as seen in

Figure 5.9. Predictably, we call this the 'val branch actions multiply' network.

5.5 Dual networks for Validity & Actions

Given that we see the task of learning validity and learning good actions as both necessary, we can

even split them up to two di�erent networks. In all the earlier models, there is a form of weight sharing

where the validity layer and actions layer share the same weights of the 'ActorPreprocess' block. It

is possible that while trying to improve the performance of the validity layer, it may in turn harm the

performance of the actions layer and vice-versa. Even though we do not expect it to be the case, there

Chapter 5. Methodology 19

is no guarantee that both loss functions for the actions and validity will work to reduce each others'

losses, that is still an assumption. To test this idea, we came up with the 'dual' network as illustrated

in Figure 5.10.

Figure 5.10: The 'dual' Network

In the dual network, we have a validity network and an actions network. Each network has their own

sets of the 'Actor Preprocess' block to prevent any form of weight sharing. In the end, the multiply

method is once again used to element-wise multiply the validity and actions layers. The idea behind

this method is to freeze all the weights of the validity network once a certain acceptable valid rate

is reached. For instance, if the agent is choosing valid actions 95% of the time, we can freeze the

validity network weights and let the actions network continue training to improve the intermediate

actions layer to take better actions. The hope is that the network training will then become less

computational and we can have a knowledge of the valid mask that we can �x as its weights are no

longer chared with the actions layer.

Figure 5.11: The 'actions only' Network

Chapter 5. Methodology 20

Finally, just to see what happens if we don't bring validity into the picture, we also have the 'ac-

tions only' network that has nothing to do with validity. The network is shown in Figure 5.11. Testing

this model will allow us to verify if learning validity does indeed allow the agent to learn better moves

faster (irregardless of whether the moves are valid).

5.6 Training Process

To train the agent to play Onitama, it will face against a computational opponent. It is too time

consuming and impractical for a human to sit & play with the agent to improve it. Instead, we let

it play with a very powerful AI, the Minimax. We adopt a curriculum approach where its starts by

training against Minimax depth 1. If it can beat the Minimax in at least 60 of the last 100 games

(during training), the Minimax will advance to the next depth and this process can repeat for as long

as necessary. The 60% is simply a hyperparameter that can be adjusted if necessary.

We will conduct a simple hyperparameter tuning and then train each one of the 8 architectures for

10,000 episodes each. Out of the 8 architectures, we let the di�erent models play with each other and

we use a ELO rating system to deterimine the strongest agent. This will also include a random AI to

see how it fares. Based on that, we will train the strongest AI for a longer period of 100,000 episodes.

We will also test the best architecture on a random AI and sees how it performs. To add some noise

for exploration during the training process, the agent chooses the action, not with a greedy behaviour

policy, but by using the actions layer probability output and using those probabilities to decide on the

action. Hence, even if the agent gives a certain action a value of 0.8, it has a 20% chance of not being

selected. This probabilistic behaviour policy contributes to the exploration aspect of this training

process. Finally, note that all plots shown with the horizontal axis as either "turn" or "episodes" uses

the moving average of the last 50 turns and episodes respectively for a slight smoothing e�ect.

	List of Figures
	Introduction
	Onitama Environment
	Rules
	Code representation

	Algorithm
	Policy Based Reinforcement Learning
	Deep Deterministic Policy Gradients (DDPG)

	Reinforcement Learning Cast
	State
	Action
	Reward & defining the environment rollout

	Methodology
	The issue of validity
	First segment of the neural network
	Branched vs Linear Networks Architectures
	Combining Validity & Action branches
	Dual networks for Validity & Actions
	Training Process

	Results
	Preliminary Model Selection
	Extended training
	ELO Round Robin Tournament

	Conclusion
	Summary
	Limitations
	Possible Improvements

	Appendix
	Rules of Onitama
	Setting up
	Movement
	Pieces movement phase
	Cards movement phase

	Winning

